1.K17什么是高温合金

2.粉末冶金高温合金的制造工艺

3.3D打印用金属粉末包含哪些

K17什么是高温合金

江西粉末高温合金价格_合金粉末厂家排名

K17——什么是高温合金

按照现有的理论,760℃高温材料按基体元素主要可分为铁基高温合金、镍基高温合金和钴基高温合金。按制备工艺可分为变形高温合金、铸造高温合金和粉末冶金高温合金。按强化方式有固溶强化型、沉淀强化型、氧化物弥散强化型和纤维强化型等。高温合金主要用于制造航空、舰艇和工业用燃气轮机的涡轮叶片、导向叶片、涡轮盘、高压压气机盘和燃烧室等高温部件,还用于制造航天飞行器、火箭发动机、核反应堆、石油化工设备以及煤的转化等能源转换装置。

760℃高温材料发展过程从20世纪30年代后期起,英、德、美等国就开始研究高温合金。第二次世界大战期间,为了满足新型航空发动机的需要,高温合金的研究和使用进入了蓬勃发展时期。40年代初,英国首先在80Ni-20Cr合金中加入少量铝和钛,形成γ‘相(gamma prime)以进行强化,研制成第一种具有较高的高温强度的镍基合金。同一时期,美国为了适应活塞式航空发动机用涡轮增压器发展的需要,开始用Vitallium钴基合金制作叶片。

此外,美国还研制出Inconel镍基合金,用以制作喷气发动机的燃烧室。以后,冶金学家为进一步提高合金的高温强度,在镍基合金中加入钨、钼、钴等元素,增加铝、钛含量,研制出一系列牌号的合金,如英国的“Nimonic”,美国的“Mar-M”和“IN”等;在钴基合金中,加入镍、钨等元素,发展出多种高温合金,如X-45、HA-188、FSX-414等。由于钴资源缺乏,钴基高温合金发展受到限制。

40年代,铁基高温合金也得到了发展,50年代出现A-286和Incoloy901等牌号,但因高温稳定性较差,从60年代以来发展较慢。苏联于1950年前后开始生产“ЭИ”牌号的镍基高温合金,后来生产“ЭП”系列变形高温合金和ЖС系列铸造高温合金。中国从1956年开始试制高温合金,逐渐形成“GH”系列的变形高温合金和“K”系列的铸造高温合金。70年代美国还采用新的生产工艺制造出定向结晶叶片和粉末冶金涡轮盘,研制出单晶叶片等高温合金部件,以适应航空发动机涡轮进口温度不断提高的需要。

760℃高温材料变形高温合金

变形高温合金是指可以进行热、冷变形加工,工作温度范围-253~1320℃,具有良好的力学性能和综合的强、韧性指标,具有较高的抗氧化、抗腐蚀性能的一类合金。按其热处理工艺可分为固溶强化型合金和时效强化型合金。GH后第一位数字表示分类号即1、固溶强化型铁基合金 2、时效硬化型铁基合金 3、固溶强化型镍基合金 4、钴基合金 GH后,二,三,四位数字表示顺序号。

1、固溶强化型合金

使用温度范围为900~1300℃,最高抗氧化温度达1320℃。例如GH128合金,室温拉伸强度为850MPa、屈服强度为350MPa;1000℃拉伸强度为140MPa、延伸率为85%,1000℃、30MPa应力的持久寿命为200小时、延伸率40%。固溶合金一般用于制作航空、航天发动机燃烧室、机匣等部件。

2、时效强化型合金

使用温度为-253~950℃,一般用于制作航空、航天发动机的涡轮盘与叶片等结构件。制作涡轮盘的合金工作温度为-253~700℃,要求具有良好的高低温强度和抗疲劳性能。例如:GH4169合金,在650℃的最高屈服强度达1000MPa;制作叶片的合金温度可达950℃,例如:GH220合金,950℃的拉伸强度为490MPa,940℃、200MPa的持久寿命大于40小时。

变形高温合金主要为航天、航空、核能、石油民用工业提供结构锻件、饼材、环件、棒材、板材、管材、带材和丝材。[1]

760℃800MPa级高温材料铸造高温合金

铸造高温合金是指可以或只能用铸造方法成型零件的一类高温合金。其主要特点是:

1.具有更宽的成分范围由于可不必兼顾其变形加工性能,合金的设计可以集中考虑优化其使用性能。如对于镍基高温合金,可通过调整成分使γ’含量达60%或更高,从而在高达合金熔点85%的温度下,合金仍能保持优良性能。

2.具有更广阔的应用领域由于铸造方法具有的特殊优点,可根据零件的使用需要,设计、制造出近终形或无余量的具有任意复杂结构和形状的高温合金铸件。

根据铸造合金的使用温度,可以分为以下三类:

第一类:在-253~650℃使用的等轴晶铸造高温合金这类合金在很大的范围温度内具有良好的综合性能,特别是在低温下能保持强度和塑性均不下降。如在航空、航天发动机上用量较大的K4169合金,其650℃拉伸强度为1000MPa、屈服强度850MPa、拉伸塑性15%;650℃,620MPa应力下的持久寿命为200小时。已用于制作航空发动机中的扩压器机匣及航天发动机中各种泵用复杂结构件等。

第二类:在650~950℃使用的等轴晶铸造高温合金这类合金在高温下有较高的力学性能及抗热腐蚀性能。例如K419合金,950℃时,拉伸强度大于700MPa、拉伸塑性大于6%;950℃,200小时的持久强度极限大于230MPa。这类合金适于用做航空发动机涡轮叶片、导向叶片及整铸涡轮。

第三类:在950~1100℃使用的定向凝固柱晶和单晶高温合金这类合金在此温度范围内具有优良的综合性能和抗氧化、抗热腐蚀性能。例如DD402单晶合金,1100℃、130MPa的应力下持久寿命大于100小时。这是国内使用温度最高的涡轮叶片材料,适用于制作新型高性能发动机的一级涡轮叶片。

随着精密铸造工艺技术的不断提高,新的特殊工艺也不断出现。细晶铸造技术、定向凝固技术、复杂薄壁结构件的CA技术等都使铸造高温合金水平大大提高,应用范围不断提高。

760℃800MPa级高温材料粉末冶金高温合金

采用雾化高温合金粉末,经热等静压成型或热等静压后再经锻造成型的生产工艺制造出高温合金粉末的产品。采用粉末冶金工艺,由于粉末颗粒细小,冷却速度快,从而成分均匀,无宏观偏析,而且晶粒细小,热加工性能好,金属利用率高,成本低,尤其是合金的屈服强度和疲劳性能有较大的提高。

FGH95粉末冶金高温合金,650℃拉伸强度1500MPa;1034MPa应力下持久寿命大于50小时,是当前在650℃工作条件下强度水平最高的一种盘件粉末冶金高温合金。粉末冶金高温合金可以满足应力水平较高的发动机的使用要求,是高推重比发动机涡轮盘、压气机盘和涡轮挡板等高温部件的选择材料。

1200℃100MPa级高温材料氧化物弥散强化(ODS)合金

是采用独特的机械合金化(MA)工艺,超细的(小于50nm)在高温下具有超稳定的氧化物弥散强化相均匀地分散于合金基体中,而形成的一种特殊的高温合金。其合金强度在接近合金本身熔点的条件下仍可维持,具有优良的高温蠕变性能、优越的高温抗氧化性能、抗碳、硫腐蚀性能。

目前已实现商业化生产的主要有三种ODS合金:

MA95金在氧化气氛下使用温度可达1350℃,居高温合金抗氧化、抗碳、硫腐蚀之首位。可用于航空发动机燃烧室内衬。

MA754合金在氧化气氛下使用温度可达1250℃并保持相当高的高温强度、耐中碱玻璃腐蚀。现已用于制作航空发动机导向器蓖齿环和导向叶片。

MA6000合金在1100℃拉伸强度为222MPa、屈服强度为192MPa;1100℃,1000小时持久强度为127MPa,居高温合金之首位,可用于航空发动机叶片。

金属间化合物高温材料

金属间化合物高温材料是近期研究开发的一类有重要应用前景的、轻比重高温材料。十几年来,对金属间化合物的基础性研究、合金设计、工艺流程的开发以及应用研究已经成熟,尤其在Ti-Al、Ni-Al和Fe-Al系材料的制备加工技术、韧化和强化、力学性能以及应用研究方面取得了令人瞩目的成就。

Ti3Al基合金(TAC-1),TiAl基合金(TAC-2)以及Ti2AlNb基合金具有低密度(3.8~5.8g/cm3)、高温高强度、高钢度以及优异的抗氧化、抗蠕变等优点,可以使结构件减重35~50%。Ni3Al基合金,MX-246具有很好的耐腐蚀、耐磨损和耐气蚀性能,展示出极好的应用前景。Fe3Al基合金具有良好的抗氧化耐磨蚀性能,在中温(小于600℃)有较高强度,成本低,是一种可以部分取代不锈钢的新材料。

环境高温合金

在民用工业的很多领域,服役的构件材料都处于高温的腐蚀环境中。为满足市场需要,根据材料的使用环境,归类出系列高温合金。

1、高温合金母合金系列

2、抗腐蚀高温合金板、棒、丝、带、管及锻件

3、高强度、耐腐蚀高温合金棒材、弹簧丝、焊丝、板、带材、锻件

4、耐玻璃腐蚀系列产品

5、环境耐蚀、硬表面耐磨高温合金系列

6、特种精密铸造零件(叶片、增压涡轮、涡轮转子、导向器、仪表接头)

7、玻棉生产用离心器、高温轴及辅件8、钢坯加热炉用钴基合金耐热垫块和滑轨

9、阀门座圈

10、铸造“U”形电阻带

11、离心铸管系列

12、纳米材料系列产品

13、轻比重高温结构材料

14、功能材料(膨胀合金、高温高弹性合金、恒弹性合金系列)

15、生物医学材料系列产品

16、电子工程用靶材系列产品

17、动力装置喷嘴系列产品

18、司太立合金耐磨片

19、超高温抗氧化腐蚀炉辊、辐射管。

粉末冶金高温合金的制造工艺

沉淀强化型粉末高温合金的制造工艺特点是采用全惰性工艺,即雾化制粉和粉末处理均在氩气保护下或真 空中进行,以避免合金粉的氧化。工艺步骤如下:①预合金粉的制备。主要采用氩气雾化法、真空雾化法、旋转电极雾化法等。②粉末处理。在氩气保护下进行筛分、混料、去除氧化物夹杂,然后进行真空脱气。③装套和焊封。在真空中将粉末装入软钢、不锈钢或玻璃-陶瓷型包套中,然后焊封。④热压成形和热加工。主要采用热等静压或热挤压,也可再进行热模锻或超塑性等温锻造。⑤超声波检验。⑥热处理和机械加工。

为提高沉淀强化型粉末高温合金的某些性能,还可采用一些新工艺,比较重要的有:①快速凝固制粉。粉末冷却速度可以达到106℃/秒,因而进一步减少了偏析,使合金的成分和组织更加均匀,同时也扩大了合金的固溶度范围,可以继续提高合金化程度,创制出强度和使用温度更高的合金,用以制作多层薄片式气冷涡轮叶片。②特殊热处理工艺。梯度退火热处理可以使叶片获得定向再结晶的组织,而盘件中心部位获得细晶组织,以制取双重性能盘,满足涡轮盘的使用要求。③热塑加工工艺。将预合金粉预先进行冷加工,使粉末内部储存应变能,从而降低合金的再结晶温度,这样就可以在较低的压力和较低的温度下进行热等静压,以获得完全再结晶的细晶组织,使材料具有超塑性,可以采用超塑性等温锻造工艺;热塑工艺可以扩大粉末粒度的应用范围,从而提高了粉末的利用率。

氧化物弥散强化型高温合金 以热稳定性高的超细氧化物质点均匀分布在金属或合金基体内,起弥散强化作用的高温合金材料。简称 ODS(oxide dispersionstrengthening)高温合金。

3D打印用金属粉末包含哪些

现在主流的金属打印材料有如下几种:

1. 316L不锈钢材料,产品简介:316L属于奥氏体不锈钢的衍生钢种,主要含有Cr、Ni、Mo,具有耐腐蚀性、耐热性。 主要用途:适用于航空航天、医疗、零件模具、珠宝和手表配件;

2. GH3536高温合金材料,产品简介:GH3536 是 Ni 基固溶强化型变形高温合金,合金在 900℃以下具有中等的持久和 蠕变强度,具有良好的抗氧化和耐腐蚀性能、良好的冷热加工成形性和焊接性能。 主要用途:适于制造在 900℃以下长期使用的航空发动机燃烧室部件、蜂窝结构、扩散器、尾 喷口和其它热端部件。

3. GH5188高温合金材料,产品简介:GH5188 是 Co 基沉淀硬化型变形高温合金,使用温度小于 1100℃,具有良好的 抗氧化性,冷热加工塑性和焊接等工艺性能。 主要用途:用于制作航空发动机燃烧室火焰筒、导向叶片等高温部件。

4. GH4169高温合金材料,产品简介:GH4169 是 Ni 基沉淀硬化型变形高温合金,合金在 650℃以下强度较高,具有良 好的抗疲劳、抗氧化和耐腐蚀性。 主要用途:适于制作航空、航天、核能和石化工业中的涡轮盘、环件、叶片、紧固件等。

5. CoCrMoW钴铬合金,产品简介:CoCrMoW 粉末是钴铬合金粉末的一种,主要在 Co 和 Cr 元素的基础上添加了 Mo 和 W等元素,含有少量的 Si、Fe 等,具有抗氧化性能和耐腐蚀性能。 主要用途:主要应用于医疗器械领域,加工金属义齿及支架等。

6. AlSi10Mg铝合金,产品简介:AlSi10Mg 是铸造铝合金,具有良好的工艺性,密度小,抗蚀性良好,热导率高, 是目前适用于增材制造的铝合金粉末材料之一。 主要用途:汽车:发动机的缸盖、进气歧管、活塞、轮毂、转向助力器壳体等 航空航天:薄壁零件如换热器、拓扑优化结构等。

7. 18Ni300 模具钢,产品简介:18Ni300 钢是一种含碳量超低的 Fe-Ni 合金,其对应的美国牌号为 M300,欧洲 牌号为1.2709。18Ni300 钢以无碳或微碳马氏体为基体,通过 Mo、Co、Ti、Al 等合金元素在时效过程中析出合金化合物形成第二相强化的超高强度钢。与传统钢 材相比,18Ni300 钢具有优良的焊接性、热塑性、加工性,在具有超高强度的同时 兼备良好的韧性。 主要用途:适用于塑料注塑模等随形冷却流道模具的选区激光熔化加工。

8. CX模具钢,产品简介:Corrax(以下简称 CX)是一种时效硬化不锈钢,与其他模具钢材料相比,具有如 下优势: 1. 具有优异的抗腐蚀性能,且热处理对材料的耐腐蚀性没有较大影响; 2. 热处理后仍有非常好的尺寸稳定性; 3.可通过热处理达到 34-50 HRC 的硬度范围。 主要用途:适用于注塑模、挤塑模、塑料成形模等随形冷却流道模具的选区激光熔化加工。

9. TC4 钛合金,产品简介:TC4(Ti6Al4V)密度低,比强度高,耐蚀性好,综合性能优异,具有良好的生物相容 性,是目前应用最为广泛的钛合金材料。 主要用途:航空航天领域:适于制造航空发动机风扇叶片、压气机叶片、飞机框梁、支架等 生物医疗领域:适于制造人工关节、髋关节等。