1.日系车与德国车的区别在哪?

2.PVC应用广泛吗?

3.生物调查报告

4.纤维乙醇的工艺原理及路线

5.煤制烯烃离过剩有多远

6.有机玻璃多少钱一平方

日系车与德国车的区别在哪?

高油价下工艺路线成本分析_高油价对炼化影响

日系车包含的品牌很多,中庸丰田,技术本田,舒适日产,以及个性的马自达,斯巴鲁,专门做校小车的铃木。德系在豪华品牌更有优势一点,豪华奔驰,运动宝马,科技奥迪,以及信仰大众。

任何一个品牌,如果想建立口碑,必然给自己加一个标签,凌志当年刚推出LS400,成功的绕开了豪华,运动,建立了自己的标签,品牌特性。

但是这个话题太大,并没有明确点出德日之间哪个品牌,所以,必须从两个国家的特性入手。

德国相对于日本,首先是工业历史悠久,这导致了德国车在满足了汽车使用这个需求后,有更多的精力去追逐工具以外的东西,比如运动,比如豪华,比如新技术。其次,德国有世界上最早的高速公路,所以,德国车对高速稳定性,感官上的稳定性,有较大的需求。再次,德国车经过多年的发展,建立了自己的产品体系,比如宝马3.5.7对应C.E.S,相对于日系,定位更加的清晰与精准。日本相对于德国,首先是岛国,决定了他们的车对高速的需求弱于弯道需求,你看,漂移文化就是日本一大标志,美国则是直线的傻快。同一级别的车型,德国车的高速感受往往好于日系车。大众朗逸,虽然是宝来的旧平台,但是高速感受相当不错,新宝来新桑塔纳拉皮车不在此列。其次,日本的资源劣势决定了他们必须在耐用上下功夫,在新技术和耐用面前,日系车往往选择耐用,这一点刚好与德系形成对比。再次,日本的海洋气候,导致金属腐蚀强于其他国家,因此必须在防腐蚀上下功夫。

综合这几个因素,日系车在我国东南沿海比较流行,而北方地区对德系认可程度较高。

当然,这个也有国内早期汽车走私,后来汽车国产后的区域优势等多个因素有关系。

这个回答基本不涉及品牌,其实讨论车,可以更多的聚焦于品牌,往往一个品牌一个调性,想更深入一点,则可以聚焦于车型,同一品牌的不同车型,也会有很多有意思的区别,如果能聚焦于年款,哪往往都是真爱粉。

1.高速稳定性,德系好于日系

2.品牌溢价,德系好于日系

3.耐用性,防腐蚀,日系好于德系

4.空间利用率,日系好于德系

5.人体工学,便利性,日系好于德系

当然,以上不是绝对的,只是一个大概的对比

PVC应用广泛吗?

他被称为装饰膜、附胶膜,应用于建材、包装、医药等诸多行业。其中建材行业占的比重最大,为60%,其次是包装行业,还有其他若干小范围应用的行业。简单地说,盐的水溶液在电流作用发生化学分解。这一过程会产生氯、苛性钠和氢气。精炼、裂化石油或汽油能产生乙烯。当氯和乙烯混合后,就会产生二氯乙烯;二氯乙烯又可以转换产生氯化乙烯基,它是聚氯乙烯的基本组成部分。聚合过程将氯化乙烯基分子连接在一起组成了聚氯乙烯链。以这种方式生成的聚氯乙烯呈白色粉末状。它是不能单独使用的,但是可以与其它成分混合生成许多产品。氯化乙烯基最初是在1835年在Justus von Liebig实验室合成出来的。而聚氯乙烯是由Baumann在1872年合成的。但是直到20世纪20年代才在美国生产出了第一个聚氯乙烯的商业产品,在接下来的20年内欧洲才开始大规模生产。 聚氯乙烯具有阻燃(阻燃值为40以上)、耐化学药品性高(耐浓盐酸、浓度为90%的硫酸、浓度为60%的硝酸和浓度20%的氢氧化钠)、机械强度及电绝缘性良好的优点。但其耐热性较差,软化点为80℃,于130℃开始分解变色,并析出HCI。PVC的特点及成型特性 比重:1.38克/立方厘米,成型收缩率:0.6-1.5%,成型温度:160-190℃。 特点:力学性能,电性能优良,耐酸碱力极强,化学稳定性好,但软化点低. 适于制作薄板,电线电缆绝缘层,密封件等。

生物调查报告

--生物能源发展调查之一

国际市场油价的日高一日,日前超出每桶70美元,给我国高速发展的社会经济带来越来越大的压力。近一个多世纪来,石油是应用最为广泛的化石能源,有“现代社会血液”之称。它不仅仅是能源之母,还是纺织、电子、化工、材料等现代工业产品的基础原材料。油价高涨、资源短缺、环保压力和高速增长的需要,形成无法调和的矛盾,直接制约我国加速建设“全面小康”和国家安全。记者调查采访了解到,我国有能力替代石油的生物能源和生物材料产业研究有数十年历史,在生物质能加工转化及相关环保技术方面有了一定的积累。专家认为,我国有条件进行生物能源和生物材料规模工业化和产业化,可以在2020年形成产值规模达万亿元,在“石油枯竭拐点”形成部分替代能力。

石油消费仍是我国国民消费水平标志,巨量进口危及社会经济发展和国家安全

进入本世纪,石油价格上涨已让很多平常百姓感到压力。以车用93号汽油为例,目前价格已经从2000年前的1.8元左右上涨到现在的4.4元左右。中国工程院院士、清华大学原副校长倪维斗教授日前接受记者采访时介绍:据美国能源部和世界能源理事会预测,全球石化类能源的可开采年限分别为石油39年、天然气60年、煤211年,而其分布主要在美国、加拿大、俄罗斯和中东地区。中国是石油资源相对贫乏的国家,专家测算石油稳定供给不会超过20年,很可能我们实现“全面小康”的2020年就是石油供给丧失平衡的“拐点年”。

根据国家海关总署提供的资料,我国由1993年变为石油净进口国。过去的10年中,我国石油需求量几乎翻了一倍。2004年进口原油1.2亿吨,比上年增长34.8%,占国家石油总供给量40%以上。今年石油进口依存度将上升到57%。到2010年,我国石油消费总量将达4亿吨。而国内生产能力仅为1.6亿吨到1.7亿吨。

另外,我国以石油为原料的能源、材料,如乙烯、醇类,需求量激升。2004年实际消费量1600多万吨,进口量占40%以上。专家预测,到2010年,此类产品的需要量将上升到3000万吨左右。这些是化工、电子、汽车、纺织、塑料、能源产品等的基础原料。而且,目前这类石油加工品的成套设备均为国外大公司垄断。

据有关部门的粗略统计,2004年一年的国际原油价格上涨,使我国增加支付金额60亿到80亿美元,相当的2000万待业职工一年的低保费用。2005年8月25日,纽约油价再创新高,突破67美元。同时,美国高盛公司预测油价还将继续上升,最终可能达到每桶105美元。国际货币基金组织日前再次预测,由于中国石油进口持续大幅度增加,国际原油价格将稳定攀升100美元以上。更有专家分析,发达国家将把石油价格不断推升,作为压制中国、印度等后发展国家的重要手段。

石油是基础能源原材料,由于资源制约因而无法调控价格,对国内市场已经造成很大压力。以安徽为例,3月下旬,安庆市因成品油价格上调引发了出租车行业的罢运、上访,全市瘫痪。此前,南京等全国大中城市多次发生类似事件发生多起。8月1日,合肥再度发生因油价直接导致的出租车行业罢运事件。即使不考虑国际政治变幻对我国能源安全的影响,要保证社会经济健康稳定发展,实现全面小康目标,发展石油替代产业,也成了当务之急。

建设“小康社会”汽车工业发展仍是主流

汽车,被认为是现代小康社会的标志。2000年,我国政府提出建设“全面小康”社会。当年,我国汽车销售市场出现井喷,同时出现由集团购买为主变个人购车为主的重大转折。安徽奇瑞集团介绍,汽车业界把2000年确定为“中国汽车元年”,认为这是中国汽车进入高速发展时期的起始点。

现在的成品油价格高位运行,对汽车工业发展与产品普及有一定影响,但从发达国家的经验和我国发展趋势看,汽车保有量迅速增加之势不可逆转。国际货币基金组织日前再次预测,中国到2030年汽车保有量将达3.9亿辆,约为现在的20倍。

合肥工业大学是中国汽车人才的摇篮之一。记者采访中,专家、教授们一致表示:“发达汽车工业”是一个国家步入工业化、现代化的必然支柱。中国科技大学商学院有关“国家经济发展时期”研究的课题组得出结论,任何发达国家的工业化过程均离不开汽车工业,特别是轿车工业的贡献。过去的100年间,没有任何一项发明比得上汽车对人类进步的推动。轿车的普及以民族意识的改变、国民素质的飞跃式提高,有不可比拟的作用。汽车是新技术、新材料、新工艺的集大成者,对技术进步的推动是全方位的。汽车还是高度产业关联的工业,按公认的数据,以家用轿车为主的汽车工业对辅助产业、相关产业的拉动效应可达1:7:11;调查研究显示:目前世界上国民生产总值超过1万亿美元的国家有7个,其中包括中国。其余6个均拥有“具有国际竞争力的汽车工业”,每千人拥有汽车数200-600辆。唯有中国在民族汽车工业方面相对落后,因而同列GDP总值大国,人均则只有6强的二十一分之一。

据国家科技部调研室的一项调查,进入2000年以后,我国汽车市场进入高速增长时期,近两年增幅超过30%。2003年与上年同比,汽车产量增长35.20%,销售量增长34.21%。特别轿车,产量由上年的109.28增长到206.89,增幅达84.7%。

我国生物能源产业市场前景广阔

专家分析,石油已不是可持续发展的理想汽车燃料,过度依赖存在四大问题,包括:国内资源短缺和国际石油争夺剧烈的双重风险;汽柴油的性能已不能满足汽车高水平和高清洁的可持续发展要求;油价居高不下,用户负担增加;依靠进口,要花大量外汇,影响国内就业。巨大的国际采购会使我国原油陷入类似现在铁矿砂市场的“价格合围”。适应汽车消费需求,建设车用燃料替代体系成为必然趋势。

据了解,目前中国汽车保有量超过2000万辆,2010年将达到5000万辆至6000万辆。届时,国内汽车年生产量将达1000万辆以上,汽车用成品油市场就将有数千亿元。另一方面,环境保护逼迫中国采取石油替代技术。北京、上海等大城市较早对公共交通车辆实行天然气替代石油等措施,主要是出于环境因素。目前,天然气、煤炭、生物质能等技术路线替代石油,其燃烧排放都小于石油类40%左右。按我国城市进程,2020年前还将有4亿人口“进城”,汽车保有量将急剧增加,不采用洁净的替代能源将无法维持人类适宜的城市居住环境。有人这样计算:大城市里按每车每天用15KG汽、柴油计,100万台车即用1.5万吨汽、柴油,它将耗尽18338万立方米空气中的氧气,使之变成只含二氧化碳和和氮气等的无氧气体。又因二氧化碳比空气重得多,所以,它们大都分布在地面附近,可在100平方公里范围内堆积1.83米厚,比正常的中国人还高出一巴掌。如果没有大自然赐予的空气流动,这将是一种多么可怕的情景呀!

中国工程院院士,国家生化工程技术研究中心主任、南京大学校长欧阳平凯说,美国国家委员会预测,到2020年,将有50%有机化学品和材料来自生物质原料。我国最先起步的是生物质转化替代石油,即乙醇汽油。生物柴油是利用植物油脂、动物油脂等提炼的车用燃料,可直接替代柴油,低排放,无需改造发动机,而且对车辆发动机还有保护作用。世界各国对此非常重视,发展迅速,美国、加拿大、巴西、日本、印度等都有庞大的发展计划。欧盟国家用菜油加工生物柴油,2001年加工量已达100万吨。本世纪我国政府也很重视这项工作,近年来相继建成了许多年产量超万吨的生物柴油厂,预计到2010年,我国生物柴油需求量将达2000万吨。

车用能源的市场稳定、数量巨大。石油价格居高不下的情况下,石油延伸替代市场也非常可观。安徽丰原集团在宿州建设的世界第一个生物质原料乙烯生产厂,2004年底投产,年产2万吨,效益可观。2005年7月底,记者当企业采访,负责人吴玉熙介绍,“当原油价格在每桶35美元左右,企业即可有利润;到40美元每桶,吨产品利润可达5000元,原油超过50美元一桶,吨产品利润可达8000元,利润率高达35%以上。

接受采访的专家、企业家强调,石油替代产业还有煤化工替代线路。但用一种紧缺能源替代另一种紧缺能源,只能是权宜之计。生物能源与生物材料产业链长,涉及基础研究、工艺创造、成套设备、运输分销、终端产品设计生产,等等。我国正由出口拉动转向内需接动,能源原材料“内需”强劲,必然呼唤出庞大的的石油替代产业。

替代能源:替代石油将使我国资源状况化短为长

--生物能源发展调查之二

按目前国内外研究水平,燃料电池汽车、电动汽车、氢动力汽车等仍有很多技术上不确定性,何时投入运营是未知数。混合动力汽车造价高,而且仍以成品油消耗为主。另一方面,石油的应用不仅仅是作为交通运输的动力,其衍生的乙烯等化工产品还是比钢铁应用更广泛的基础材料。因此,发展生物能源是必然之路,眼前解决车用燃油问题,中、长期解决后石油时代的能源、原材料问题。

目前,国际上生物能源技术相对成熟,替代石油的路线是:谷物、秸杆、其它植物等-发酵-乙醇-车用油、乙烯、无毒溶剂及上百种化工、原材料产品等;另一种是利用劣质食用油、麻疯树籽等直接加工生产高品质车用柴油。无论何种生物质转化,都是我国资源的“长腿”。发展生物能源是农业大国和“缺油多煤”资源现状化短为长的最佳契机。

发展石油替代行业有利于解决“三农”问题

农村、农民和农业的“三农”问题、环境与资源问题,是13亿人口大国均衡发展、建立和谐社会的关键,建立庞大的“石油替代”能源体系,不仅为我国农业产业化、农村地区城市化提供良好的机遇,是我国相当长时间发展重要驱动力,也是解决这些突出问题的最佳切合点。我国最著名的农业科学家之一、中国科学院院士、中国工程院院士石元春日前公开提出:让我国农民“种出绿色大庆”。

据科技部有关单位的调研,我国南方的甘蔗、木薯,中、东部地区的小麦、水稻,北部的土豆、玉米,西部地区的油桐。麻疯树,干旱地区的山芋,等等,都是加工转化燃料酒精、生物柴油的良好原材料。其中麻疯树籽含油率达50%,是制造生物柴油的良好材料。我国西南地区现有10万亩,到2010年种植面积可达1000万亩。国家科技部生物技术中心主任王宏广接受采访时告诉记者:目前我国富余的农副产品加工转化,确可“再造大庆”,即相当于5000万吨原油。如果把每年农民白白焚烧的秸杆收集处理后加工乙醇,替代车用油,总量可达6000万到1亿吨。已经开始用生物质能加工品全线替代石油产品的安徽丰原集团董事长李荣杰测算:只要石油不低于35美元每桶,用生物质能加工成燃料酒精、生物柴油、乙烯、聚酯等,都有利可图。

中国工程院院士、天津大学教授王静康等专家指出:“国际上许多国家和组织的预测表明,本世纪中叶可再生能源在一次性能源消耗中将超过50%。”科技难度更大的生物制氢等一旦投入应用,生物能源前景更为广阔。可喜的是,我国生物质能富集区往往是老少边穷地区和纯农业区,经济建设相对落后,发展生物能源不仅经有经济意义,对解决农业产业化、农村剩余劳动力转移、农村地区工业化和建设和谐社会,都有很大意义。中国著名农业专家石元春教授等专家强调:发展生物能源要做到“一石四鸟”:其一,生物质能的全面利用,可解决农民增收问题;其二,中小型加工企业的发展,可以加速农业产业化和农村城镇化;其三,生物质能与土地资源富集的中部、西部贫困农村的地区会形成中国生物能源企业集群,从而促进和谐社会进程;其四,结合中国能源战略调整,中国自主品牌汽车工业可以考虑生产适应中国能源体系的生物能源汽车产品,在汽车普及化过程中迎头赶上,提升竞争力。

发展生物能源和原材料可以做到“四不”

能源、原材料是国家、社会的支撑体系,战略调整是否会触及社会基础和多方利益,从而引发较大的社会震荡?国家科技部中国生物技术发展中心进行了大量了调查研究,中心主任王宏广总结为“四不”:“不与人争粮,不与粮争地,不与传统行业争利,不与发达国家争资源”。

“不与人争粮,不与粮争地,不与传统行业争利”,这是我国发展生物质能利用的新特点,科技部、发展改革委、清华大学、北京农业大学的研究人员均强调这一点。生物技术开发中心主任王宏广、北京农业大学教授李十中、大连理工大学生命科学院院长修志龙等表示:我国科学用粮潜力很大,每年陈化粮、饲料用粮约1亿吨左右,加工转化可获得相当5000万吨的原油,同时还有30%继续成为饲料。现状是每年8000万吨粮食直接用作饮料,浪费3000万吨以上的淀粉。利用小麦陈化粮生产燃料酒精的河南天冠燃料乙醇有限公司提供的数据:仅小麦麸皮中提取的物质,价值就和小麦差不多。而目前发展生物能源、生物材料,原料是分布更为广泛、利用价值更高的植物。如我国科学家研究的甜玉米,每公顷产量可达70吨,可生产6吨以上燃料酒精。南方的木薯、甘蔗,生长广泛的菊芋、土豆、山芋,等等。这些不宜食用的植物,是转化为生物能源、材料的最佳原料。另外,我国现在每年仅废弃的作物秸杆、林业弃置物达10亿吨,相当于1亿多吨的燃料汽油。

就发展生物能源、材料的土地资源而言,我国有约40亿亩的低质地、荒坡、滩涂等,可以用来种植适宜物种;淮河以南还有3亿计冬季闲田,用来种油菜生产生物柴油,相当于“再造大庆”。专家介绍,我国加工替代石油产品的农作物、薯类植物研究时间长,来源非常丰富,潜力巨大。早在“七五”、“八五”时期,部委、高校就组织科学家研究、攻关,寻找到很多取之不尽、用之不绝的植物种质。如有稳定的市场,推广种植条件相当成熟。大连理工大学有教授在山东滩涂种植菊芋(洋生姜)数十万亩,长势很好。这种植物我国南北方农民都有小规模种植。在贫瘠的土地上,盐碱地、滩涂都可以长得很好,固沙能力还很强。一次种下,自然生长。每年挖取其块茎即可,第二年还会自己生发。亩产量可达万斤。糖的含量超过甘蔗30%,甜度是蔗糖的一倍。结合“山川改造”工程,我国可以大量种植生物质能富集的植物。我国西南地区的麻疯树等木质油料发展迅速,籽含油率达50%,现有10万亩,2010年可达1000万亩。

专家分析,生物质能利用,特别是替代石油的能源、材料产业,前端是农业,中间是发酵等生物转化,后端依然是现有的大化工。因此,我国大规模发展生物质能产业,并不会对传统化工工业产生冲击。同时,我国能源、原材料需求增长过快、消费量较大,传统石油加工业根本无法满足市场需求,产品供应保障能力薄弱,现在广东等地不断发生“油荒”已是前兆。因此,传统石化领域对生物能源、原材料普遍看好,中石油公司等国家垄断性石化公司也在力推生物质能利用。

清华大学刘德华教授等强调:生物质能利用,特别是替代石油,是我国建设和谐社会、解决“农业、能源、环境”难题的最佳切合点。我国的老少边穷地区生物质能与土地资源富集,通过发展生物产业,可以让这些地区形成新兴产业,让农村地区形成工业化支点。刘教授专门到青海省调查,青海是德国面积的两倍,非常适合种植油菜。现在德国生物柴油年产量140万吨,如果青海能够发展到德国水平,其产业链收益非常可观。我国新疆棉产区面积广大,在棉籽中引入一个产油基因,即可让棉籽产生很高的副效益。我国石油对外依存度超过50%,而且年需求量还要扩大;化石产品对环境的污染日益严重,相比之下,燃料乙醇、生物柴油的污染排放要比化石燃料低50%以上。用生物材料,如聚乳酸等,可制成可降解塑料、绿色涂料和纺织品等。

替代能源:借鉴国外石油代替及生物能源发展经验

--生物能源发展调查之三

1907年,汽车发明人福特制造出第一台燃烧纯乙醇的发动机;20世纪30年代,不少国家用醇类燃烧替代石油作为车用能源;中国抗日战争时期,我方不少汽车就是用乙醇作为燃料。但真正形成替代石油的产业,国外发展历史已约20多年。

根据发展改革委的调查,以美国、巴西为主的燃料乙醇替代石油产业形成,可分为四个阶段:其一,20世纪70年代,国际上第一次石油危机使发达国家和贫油国家重视石油替代,为解决对石油的高度依赖问题。美国、巴西等大规模发展乙醇替代车用油。甲醇等天然气、煤炭化工产品引用汽车能源体系;第二阶段是20世纪80年代,主要解决农产品过剩影响农业发展,和由此引发的农民收入问题;第三阶段是20世纪90年代,汽车工业发展迅速,汽车保有量大增,引进醇类重点解决车用油的增氧剂,利用乙醇等提高发动机性能,减少汽车排放对大气的污染;第四阶段是进入21世纪,发达国家和发展中国家一并重视石油替代,从各个侧面解决上述所有问题。对我国而言,则是解决可持续发展的最根本途径。

生物质能转化中的“太阳能-生物质-乙醇燃料-能量利用-二氧化碳和水”,由于充分体现了“绿色”和“循环”,备受科学界、环保人士的追捧。现在,加拿大、法国、瑞典、德国、墨西哥、日本、印度、韩国和泰国等,均有发展石油替代产业的计划,并有不同规模的实施。其中巴西规模最大,目前汽车全部用乙醇汽油,用燃料酒精(乙醇)替代石油份额达43%。美国乙醇汽油占市场份额的12%。加利福利亚州从1993年开始实施“灵活燃油车辆计划”,制定了E85燃油规格:85%的乙醇外加15%汽油。

与我国发展石油替代产业最有可比性的是巴西。巴西851万平方公里面积,1.65亿人口,农业是其重要支柱,其中甘蔗种植和蔗糖出口均为世界第一。巴西同样是贫油国家,1930年开始,即有5%到15%的乙醇加入汽油中使用。后石油价格下降至1美元1桶,巴西又有非常便捷的海上运输,石油替代产品的生产长时间中止。

巴西汽车工业发展较早,国内上世纪60年代汽车即有较快的普及。1973年,石油危机爆发,当年巴西政府多支付40亿美元用于购买石油,沉重打击了巴西经济,致使政府下决心发展石油替代产业。1975年,巴西政府启动”生物能源计划”和”全国实施发展燃料乙醇生产计划”,两大计划的核心是用甘蔗作原料,用发酵法,生产燃料乙醇,再和汽油混配,作为车用动力。巴西政府在数年内投入数十亿美元,扶持该上述两大计划的实施,到20世纪90年代,燃料乙醇产量达1000万吨,居世界第一位。在车用油品中,燃料酒精添加量从35%-5%,还有部分纯以乙醇为燃料的汽车。现巴西汽车拥有量达每千人80多辆,远远高出我国的每千人16辆,但车用能源的压力并没有我国突出。

巴西发展石油替代产业,与本国支柱产业蔗糖生产相结合,逐步形成甘蔗生产-燃料酒精-乙醇汽车,一个全新的生产链。全国汽车保有量1290万辆,纯乙醇汽车达370万辆。这些乙醇加工厂在糖价高时生产食用糖出口,在糖价低时生产燃料酒精供本国使用。现在不仅国际石油价格对巴西社会经济影响大大减弱,农民的甘蔗种植与蔗糖生产也相对稳定。

据统计,在巴西实施石油替代产业的两大计划33年中,政府共投入117亿元,建成10大燃料乙醇生产基地,为国内提供了150万个就业岗位,节省石油进口外汇220亿美元。乙醇汽油相关产业总产值即达到国民生产总值的8%,超过包括电信业在内的信息技术产业。

根据最新材料,德国大众、宝马两大品牌都在抓紧研发生物能源汽车,预计2008年前推出主流车型供应市场。美国福特汽车公司较早开发出“多用途汽车”,利用电子技术使汽车发动机可以适应多种能源。我国福建现有一座万吨级生物柴油工厂,其产品主要出口欧洲。

纵观国际上的发达国家如美国、德国、日本,到次发达的南非、巴西、韩国,到发展中印度和泰国等,均在发展石油替代产业的政策制度、技术完善、装置建设和车辆制造等方面提供了良好的借鉴,为我国走中国特色石油替代之路铺平了道路。特别是巴西经验,更具实际意义。中国科学院和中国工程院院士石元春等权威接受记者采访时认为:我国是农业大国,人口是巴西的上十倍,资源与市场条件更适合建设石油替代产业链,让我国农民种了“绿色大庆”形成中国特色的能源体系,在当前显得更为紧迫。

替代能源:我国生物质能替代石油起步稳收效显著

--生物能源发展调查之四

在我国,资源条件和技术条件有可能大规模替代石油产品的主要是生物质能和煤炭。自2000年4月领导批准开展变性燃料乙醇研究与实施,2002年在试点城市推广,到2005年4月1日安徽作为第五个省份开始全省封闭运营销售乙醇汽油,短短的五年,已创立了成功的生产、运营模式,并使消费群体初步接受,为我国石油替代产业书写了良好开篇。煤炭转化替代方面研究力度更大,投入更多,也有丰厚的积累和局部运营经验。

据发展改革委能源研究所研究员张正敏介绍,生物能源主要指利用淀粉质生物,如粮食、薯类、作物秸杆等,加工成乙醇(燃料酒精)、生物柴油、生物制氢等,直接作为动力来源;其次是通过生物技术将粮食转化为生物材料,利用玉米等生产石化乙烯、聚乙烯及乙烯转化的系列化工产品。

我国利用生物质能起步较早。抗日战争期间,河南酒精厂生产燃料酒精供给抗战军队车辆。上世纪80年代末,世界第二次石油价格上涨阶段,我国就把生物乙烯列入重点发展项目,并在安徽宿州投资8亿元建厂,后因技术与成本等原因,此厂未能全面生产。目前,我国已在东北三省、河南、安徽等5省全面销售乙醇汽油,涉及人口近3亿。根据国家发展改革委安排,近期还将在山东、河北、湖北等部分省或城市封闭运营。现供给燃料乙醇的企业有吉林燃料乙醇有限公司、河南天冠燃料乙醇有限公司、黑龙江华润金玉实业有限公司、安徽丰原集团等4家不同类型的企业。

根据国际上的经验,我国采用乙醇占10%的配比,替代石油中污染地下水并可能致癌的MTBE,性能更为优越,而且不需要对现有车辆进行改造。综合国家发展改革委和各试点地区的情况,生物质能转化替代石油有较好的经济效益、社会效益和环境效益。首先,试点情况表明车用乙醇汽车在我国完全适应。不仅河南、安徽城乡,寒冷地区的哈尔滨、肇东两个城市冬季使用测试表明,燃料乙醇能够适应,为进一步推广奠定基础。第二,解决了使用中的技术问题。使用中的油、水分离,个别车辆动力不足、油路阻塞等,都有较好的解决办法。第三,环境保护效益明显,污染物排放降低25%-30%。第四,生产企业探索出大规模生产模式,普遍提高综合效益。现在生产企业均使用国家战略储备中的陈化粮,以玉米、小麦为主。燃料乙醇生产仅使用其中的淀粉,其它可生产蛋白饲料、油料等。安徽丰原、河南天冠等均能做到“吃干榨尽”。第五,建立了一批行之有效的法规。如《车用乙醇汽油使用试点方案》和《车用乙醇汽油试点工作实施细则》等。为我国进一步开展石油替代提供了积累。第六,我国政府和石油销售行业推广石油替代产品积累了初步经验。

根据发展改革委能源研究所提供的材料,巴西1980年用甘蔗生产燃料乙醇,吨价高达849美元,到1998年,成本下降以300元美元以下。而我国现行的燃料乙醇生产价格成本约为3500元吨,技术水平较高的丰原集团可降到3000元以下,单位综合成本为2993元。

石元春院士提出,如果采用高新技术改良物种,成本会进一步降低。如种植甛高梁生产燃料乙醇,吨产品综合成本可下降到2800元以下,使用麻疯树等木质油料基生产生物柴油,吨成本应在3000元以下。清华大学教授、原清华大学生物研究中心主任曹竹安教授告诉记者:“我国加工替代石油产品的农作物、薯类植物来源非常丰富,潜力巨大。早在‘七五’、‘八五’时期,部委、高校就组织科学家研究、攻关,寻找到很多取之不尽、用之不绝的植物种质。如有稳定的市场,推广种植条件相当成熟。”曹教授列举菊芋(洋生姜)为例说明:我国南北方农民都有小规模种植。这种多年生草本植物,在贫脊的土地上,盐碱地、滩涂都可以长得很好。一次种下,自然生长。每年挖取其块茎即可,第二年还会自己生发。亩产量可达万斤。糖的含量超过甘蔗30%,甜度是蔗糖的一倍。“这在10年前就有研究结论,只是没有找准大的市场,研究成果无法推广”。

据了解,试点企业中吉林燃料乙醇有限公司采用国际最为先进的奥地利高布殊(VOGELBUSCH)工艺技术,河南天冠采用传统技术改造,安徽丰原采取自主研发的具有国际一流水平的技术系统。这些成功的探索为我国大规模发展燃料乙醇提供的技术与装置条件。加上试点销售的成功,现在从南到北,各地利用木薯、玉米、甘蔗等不同生物质加工替代石油投资热情高涨,具体研发工作大大加强。

替代能源:用自主技术形成生物能源产业条件成熟

--生物能源发展调查之五

从领导到居民,从专家到经济界人士,一致认为,我国作为13亿人口的大国,对关系社会经济发展命脉的能源体系,必须建立在“以我为主”的基础之上。

在生物质转化替代石油方面,我国企业掌握关键技术并达到国际一流水平;但在秸杆发酵利用(水解木质纤维素)等关键技术方面,已具有国际领先水平。利用我国企业自主技术形成石油替代产业,是最为现实的选择。

我国已基本掌握生物质能利用关键技术,居部世界领先地位

生物质能利用先是通过发酵、分离、提取和化工加工后形成商品。在整个加工转化过程中,发酵、分离与环保是三大关键部位。与其它领域不同,在生物质能利用领域里,我国已经基本掌

纤维乙醇的工艺原理及路线

自然界把纤维素赋予植物作为主要骨架结构,这种由葡萄糖分子紧密咬合并层层叠加的“脚手架”,为植物提供了抵抗重力和生物降解的支撑性架构。半纤维素结合在纤维素微纤维的表面,并且相互连接,木质素形成交织网来硬化细胞壁,形成了极为坚固的木质纤维素结构。为了释放木质纤维素里的能量,科学家必须先破坏进化赋予植物的这种异常稳定的结构。一般来说,这种“解封”过程先要将固体生物质解构成聚合度更低的小分子物质,随后将它们转化成燃料。一般采用控温方式进行这种操作。低温(50℃~200℃)情况下,生物质裂解产生的单糖可以被发酵成乙醇或其他形式的燃料。

在当前的纤维素乙醇产业化探索中常采用酸水解和酶水解两条不同的技术路线来实现木质纤维素的降解。

在酸水解工艺中,可以使用盐酸或硫酸,按照使用酸的浓度不同可以进一步分为浓酸水解和稀酸水解。法国早在1856 年即开始进行了浓硫酸水解法进行乙醇生产,浓酸水解过程为单相水解反应,纤维素在浓酸作用下首先溶解,然后在溶液中进行水解反应。浓酸能够迅速溶解纤维素,但并不是发生了水解反应。浓酸处理后成为纤维素糊精,变得易于水解(纤维素经浓酸溶液生成单糖,由于水分不足,浓酸吸收水分,单糖又生成为多糖,但这时的多糖不同于纤维素,它比纤维素易于解) ,但水解在浓酸中进行得很慢,一般是在浓酸处理之后再与酸分离,使用稀酸进行水解。

稀酸水解木质纤维素的技术可谓历史悠久,1898年德国人就尝试以林业生产的废弃物为原料生产乙醇,并建立了工业化规模的装置,每吨生物量可以生产50 加仑的乙醇。与浓酸水解的工艺路线相比,稀酸水解需要在比较高的温度下进行,才能使半纤维素和纤维素完全水解。稀酸水解木质纤维素通常采用二级水解的工艺方案:第一级水解反应器的温度相对第二级来说略低一些,比较容易水解的半纤维素可以降解;第二级反应器主要降解难降解的纤维素,水解后剩余的残渣主要是木质素,水解液中和后送入发酵罐进行发酵

同植物纤维酸法水解工艺相比,酶法水解具有反应条件温和、不生成有毒降解产物、糖得率高和设备投资低等优点。而妨碍木质纤维素资源酶法生物转化技术实用化的主要障碍之一,是纤维素酶的生产效率低、成本较高。当前使用的纤维素酶的比活力较低,单位原料用酶量很大,酶解效率低,产酶和酶解技术都需要改进。为了满足竞争的需要,生产每加仑乙醇的纤维素酶的成本应该不超过7 美分。但在当前产酶技术条件下,生产1加仑乙醇需用纤维素酶的生产费用约为30~50 美分。

有关部门介绍,国内当前生产乙醇主要是以粮食为原料,但随着燃料乙醇作为替代能源需求量的不断攀升,各界有关粮食安全的争论日趋激烈,寻找理想的替代原料成了研究的焦点。2006年8月,我国首条纤维乙醇生产线——天冠集团3000吨级纤维乙醇项目,在镇平开发区开工奠基。

这一项目打破了过去单纯以粮食类原料生产乙醇的历史,使利用秸秆类纤维质原料生产乙醇成为现实。这不仅使秸秆类废物得到科学利用,而且能为国家节约大量粮食。

2008年5月29日,经合组织与联合国粮农组织在其发表的一份报告中称,到2017年,全世界的乙醇产量将是2007年的2倍,达到1250亿升。该报告还指出,政策上的支持,油价的攀升,都会强烈影响未来对生物燃料的需求。而这种上升趋势将导致全球粮食价格的继续攀升和减小粮食在食物和饲料中的使 用率。

那么,在未来10年,以家用和农林废料为原料的第二代生物燃料究竟能不能取代粮食乙醇,实现大规模的商业生产呢?

很多专家估测,由于玉米乙醇的生产将占用更多耕地,并与粮食需求相竞争,其发展势必受到限制。纤维素乙醇的吸引力在于其原料包括作物秸秆、野草、废木料和家用废料,将这些又便宜又丰富的东西,转化为乙醇所需要的燃料比较少,因此它比生产玉米乙醇的过程所释放的温室气体要少。此外,一定面积的野 草或其他作物可以比玉米多生产约两倍的乙醇,因为这些植物的秸秆和种子都可以利用,而不是像如今的玉米乙醇一样只能利用玉米粒。美国自然资源保护委员会的一份报告指出,到2050年,纤维素来源的巨大生产力将最终使得其达到5600亿升的乙醇生产量,相当于如今美国汽油消耗量的2/3。

煤制烯烃离过剩有多远

此篇研究报告为中债资信煤化工专题研究系列第二篇,主要研究烯烃供需关系、煤制烯烃市场发展情况、成本竞争力、竞争格局、产业政策等方面的问题。

煤制烯烃即煤经甲醇制烯烃,是指以煤为原料合成甲醇后再以甲醇为原料制取乙烯、丙烯等烯烃的技术。煤制烯烃包括“煤气化、合成气净化、甲醇合成及甲醇制烯烃”四项核心技术。近年来,煤制烯烃产能增长势头迅猛,截至2014年底,我国已投产煤及甲醇制烯烃产能合计506万吨,约占当期烯烃总产能的12%。

从需求端看:中国烯烃产品潜在进口依赖度达到45%,下游以聚乙烯、聚丙烯产品为主,未来几年整体需求增速有望维持在7%左右的水平;从供给端看,烯烃产能结构以石油基的为主,整体产能利用率接近90%;产品以通用合成材料为主,差异化程度较低,高附加值、功能性、专用产品比例不高。目前中国烯烃产品仍处于进口替代阶段。

石油基烯烃市场占有率达到90%,但由于前期油价高位运行导致石化企业投资石油基烯烃利润微薄,目前在建产能主要以煤及甲醇制烯烃产能为主,预计2020年在建产能将实现完全达产,届时中国的烯烃进口依赖度将降至20%左右,受能源格局及资源禀赋影响,进口烯烃在品质、价格方面有一定优势,进口需求仍将在较长时期内存在,届时我国烯烃市场可能面临一定过剩风险。

生产成本方面:煤制烯烃的主流技术路线主要包括MTO(甲醇制烯烃)和MTP(甲醇制丙烯)两种,主流技术已相对成熟,但是生产设备严格按照工艺流程、持续满负荷生产并生产出高品质产品的难度较大,因而技术水平对项目运营及经营绩效影响仍很大。目前陕西、内蒙古等地煤制聚烯烃目前完全生产成本在6000~6500元/吨,而截至2015年9月底,大连商品交易所线型低密度聚乙烯、聚丙烯结算价分别约8250元/吨和7064元/吨,虽然油价下跌导致烯烃产品价格也明显下降,但目前已投产的煤制烯烃项目仍具备较好的盈利性。油价下跌使传统石油基产能成本竞争力大幅提高,目前煤制烯烃与石油基烯烃成本水平大致相当。随着供给的不断增加,煤制烯烃整体利润空间面临不断缩小的压力。

煤制烯烃即煤经甲醇制烯烃,是指以煤为原料合成甲醇后再以甲醇为原料制取乙烯、丙烯等烯烃的技术。煤制烯烃包括“煤气化、合成气净化、甲醇合成及甲醇制烯烃”四项核心技术。近年来,煤制烯烃产能增长势头迅猛,截至2014年底,我国已投产煤及甲醇制烯烃产能合计506万吨,约占当期烯烃总产能的12%。本文将通过分析烯烃行业供需关系、成本竞争力、竞争格局等方面的内容,旨在对煤制烯烃行业景气前景做出前瞻性的判断。

参考: style="font-size: 18px;font-weight: bold;border-left: 4px solid #a10d00;margin: 10px 0px 15px 0px;padding: 10px 0 10px 20px;background: #f1dada;">有机玻璃多少钱一平方

有机板有分类的:国产,合资,进口。价格都不同的.相对来说国产的最便宜但是材质较差,厚度也不足,5mm的只有4.2到4.5厚度。进口的最贵但是材质方面相对最好的厚度也足。同种规格的板差价大约有3到4倍. 一般标准板 1.22m*2.44m 还有大的1.5m*3.0m 以1.22*2.44m来说 国产的大约 120到150RMB,合资 220左右 进口的就贵了价格要你自己咨询下厂商把,变化比较大, 由于最近油价上涨,胶类价格也在张,以上价格可供参考了。具体的还是多寻几家供应商评估一下把。